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ABSTRACT 

 

Determining the isotopic composition of nitrate (δ15N-NO3
- and δ18O-NO3

-) in water can provide 

useful information to identify the sources of nitrate pollution and understand its dynamic behaviour 

in the aquatic ecosystem. In this study, six river water samples from the Linggi River, Malaysia were 

obtained to determine the nitrate level and understand possible sources of nitrate pollution using 

nitrate stable isotopes. The nitrate level and nitrate stable isotopes were measured using ion 

chromatography (IC) and Continuous Flow Elemental Analyzer Isotope Ratio Mass Spectrometer 

(CF-EA-IRMS) respectively. The nitrate in the river water samples ranged between 0.97± 0.01 mg L-

1 and 36.08 ± 0.12 mg L-1. The nitrate level in all river water stations was below than World Health 

Organization (WHO) and Malaysian Raw Drinking Water guideline level. For nitrate stable isotopes 

the δ15N-NO3
- values ranged from +1.4‰ to +15.6‰ and the δ18O-NO3

- values ranged from +13.8‰ 

to +27.4‰ in the river water samples. Based on the cross plot of nitrate stable isotopes, the Linggi 

River were influenced by the mixture of nitrate pollution sources process from ammonia in fertilizer, 

soil ammonia, sewage, manure, nitrate fertilizer and atmospheric nitrate. This study reports the 

signature of nitrate stable isotopes in potential nitrate pollution sources identification and these 

findings will help further pollution mitigation action for environmental protection. 
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INTRODUCTION 

 

Worldwide, nitrates in the natural nitrogen cycle are being increasingly altered due to anthropogenic 

contributions, such as fossil fuel burning, sewage discharge, agricultural intensification, and intensive 

farming (DeVries & Zhang, 2016; Filoso, Martinelli, Howarth, & Boyer, 2006; Gutiérrez, Biagioni, 

Alarcón-Herrera, & Rivas-Lucero, 2018; Jiang et al., 2019; Zafirah et al., 2017; Zhang et al., 2018). 

In addition, since the beginning of the 20th century, the enormous impact of anthropogenic activities 

on the environment has altered the nitrogen cycle, doubling the amount the reactive nitrogen 

(Camargo and Alonso 2006; Gruber and Galloway 2008; Ver et al. 1999). Thus, precise and reliable 

estimation of nitrate pollution in the ecosystems is warranted. 
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Nitrate occurs naturally as part of the nitrogen cycle. Despite its natural occurrence, the rising 

concentrations of nitrate serve as ubiquitous water pollutants. The World Health Organization (WHO) 

and Malaysian National Raw Drinking Water Guideline have set a limit of 50 mg L-1 for nitrate in 

drinking water sources. Nitrate is a contaminant of concern because its presence is correlated to 

various environmental problems, such as eutrophication, and health hazards (Akinnawo 2023; Grout 

et al. 2023). Nitrate causes methemoglobinemia (blue baby syndrome) in children (WHO 2017). 

Furthermore, increased atmospheric loads of sulfuric and nitric acids from anthropogenic input lead 

to excess alkalinization and acidification of rivers, in addition to eutrophication (Camargo & Alonso, 

2006; Gruber & Galloway, 2008; Wu, Luo, Luo, Ma, & Wang, 2018). These loads enter the river and 

groundwater via precipitation and may cause environmental harm. 

Furthermore, the presence of nitrate in water may be considerably affected by temporal variations, 

precipitation, hydrogeological conditions, and land use activities (Nejatijahromi et al. 2019). Under 

many environmental circumstances, isotopes offer definitive source identification because different 

nitrate sources possess distinct nitrogen and oxygen isotopic signatures. The dual nitrogen and oxygen 

ratio of nitrate is a valuable fingerprinting tool to identify the predominant source of nitrate pollution 

in water (Kendall et al., 2007; Li et al., 2010; Michalski, Kolanowskit, & Riha, 2015; Qin, Zhang, & 

Wang, 2019; Venkiteswaran, Boeckx, & Gooddy, 2019; Zhang, Shi, Song, & Li, 2019). This study 

aims to determine nitrate levels and nitrate stable isotopes in the river water samples to understand 

the nitrate pollution sources in the Linggi River. 

 

MATERIALS AND METHODOLOGY 

 

Study Area 

Linggi River is located in the Negeri Sembilan state and covers a distance of approximately 1,530 

km2. The river passes through urban areas, such as Seremban and Senawang, as well as rural areas, 

toward the Strait of Malacca. The Linggi catchment is dominated by residential and industrial areas 

in the upstream region, while major agricultural activities, small residential areas, and drinking water 

intake point are located from the middle stream toward the downstream areas. The coordinate points 

and the description of the sampling locations for this study are shown in Figure 1 and Table 1 

respectively.  
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Figure 1. River water sampling location at Linggi River (DWTP= drinking water treatment plant; 

SAINS= Syarikat Air Negeri Sembilan) 
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Table 1: Description of sampling location 

 

Station Latitude Longitude Land Use 

RW1 101.93° 2.68° Small town, cow farm 

RW2 101.91° 2.67° Residential Areas, sewage treatment plant 

RW3 101.96° 2.58° Palm oil plantations, small towns, residential areas 

RW4 101.96° 2.51° Residential areas 

RW5 102.01° 2.48° Residential areas 

RW6 101.96° 2.73° Residential areas, animal farm 

 

Sampling procedure 

 

The sampling for nitrate and nitrate stable isotopes was conducted in April 2018 at Linggi, Negeri 

Sembilan, Malaysia. For nitrate level analysis, river water samples were collected using a clean 

bucket and passed through a 0.45-µm membrane filter. The samples were stored in 250-mL bottles 

in an icebox and kept in a refrigerator at ±4 °C in the laboratory. The water samples were analyzed 

within 48 hrs of collection. 

For nitrate stable isotope analysis, 4 litres of river water samples were collected using a clean bucket 

and passed through a 0.45 µm membrane filter, followed by a 0.20 µm membrane filter. All samples 

for nitrate stable isotope analysis were stored in an icebox and kept in the freezer to prevent any 

significant chemical and biological changes till further analysis. All samples were analyzed within 

48 hrs of collection. 

 

Analysis of nitrate in the river water samples 

 

Nitrate in the water samples was measured using ion chromatography (IC) (ICS 1000 Dionex, USA) 

following the American Public Health Association (APHA) 4110B standard method. Briefly, the 

water samples are injected into a stream of eluent in the IC system and passed through a series of ion 

exchangers. The target anions are separated based on their relative affinities for a low-capacity, 

strongly basic anion exchanger in the guard and analytical columns of the IC system. The separated 

anions are directed through suppressors, which continuously suppress eluent conductivity and 

promote analyte response which in this study in the nitrate ion. In the suppressor, the separated anions 

are converted to their highly conductive acid forms, while the conductivity of the eluent is greatly 

decreased. The separated nitrate ion in their acid forms is quantified based on their conductivity and 

identified based on their retention time (RT). Quantification was performed using the peak area of 

the ions. Five calibration points of 0.5 mg L-1, 1.0 mg L-1, 2.0 mg L-1, 5.0 mg L-1 and 10.0 mg L-1 

were established with the correlation of coefficient (R2) of 0.997. Calibration verification (quality 

control standards) was done for every twenty samples that were analyzed; the values ranged between 

90 and 110%. Method blanks and spiked samples were analyzed to ensure method performance with 

recovery between 70% and 130%. Details of the apparatus, reagent, chemicals, standards, and quality 

controls are described elsewhere (APHA 2017). 
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Analysis of nitrate stable isotopes in the river water samples 

 

The nitrate stable isotopes (δ15N-NO3
- and δ18O-NO3

-) analyses were carried out using the ion-

exchange method based on the United States Geological Survey (USGS) guideline for the 

determination of δ15N-NO3
- and δ18O-NO3

- (USGS 2001) and literature (Minet et al., 2011; Silva et 

al., 2000; Xing & Liu, 2011). Briefly, the nitrate in the water samples was extracted using AG50-

WX8 and AG1-X8 resins and eluted using 3M hydrochloric acid. After the elution, the neutralization 

process was performed using silver oxide salt to produce silver nitrate salt from the samples. The 

silver nitrate salt was freeze-dried and stored prior to analysis. The determination of δ15N-NO3
- and 

δ18O-NO3
- in the silver nitrate from the water samples was carried out using Continuous Flow 

Elemental Analyzer Isotope Ratio Mass Spectrometer (CF-EA-IRMS) (SERCON 20-22, UK). 

 

The δ15N values of samples were reported using conventional delta (δ) notations in per mil (‰) 

relative to the AIR standard (δ15N = 0‰). Isotope signatures for δ15N were calculated as [Rsample − 

Rstandard) /Rstandard] × 1000, where R = 15N/14 N. The δ18O values of samples are reported using 

conventional delta (δ) notation in per mil (‰) relative to the Vienna Standard Mean Ocean Water (V-

SMOW) (δ18O = 0‰)  and calculated as [Rsample − Rstandard) /Rstandard] × 1000, where R = 18O/16 O.  

 

 

RESULTS AND DISCUSSION 

 

The level of nitrate in the river water samples 

 

Figure 2 presents the values of nitrates in river water samples at RW1-RW6 from the Linggi River. 

The nitrate level in RW1, RW2, RW3, RW4, RW5 and RW6 were 10.28 ± 0.12 mg L-1, 17.51 ± 0.15 

mg L-1, 36.08 ± 0.12 mg L-1, 0.98 ± 0.01 mg L-1, 2.42 ± 0.02 mg L-1, and 2.17 ± 0.06 mg L-1 

respectively (Figure 2). The range of nitrate concentration in the river water samples was between 

0.97± 0.01 mg L-1 and 36.08 ± 0.12 mg L-1. The highest nitrate concentration was observed at the 

RW3 station. This station was surrounded by residential areas and palm oil plantations. The highest 

nitrate level in this station may be due to the potential of nitrate sources from fertilizer and also from 

the discharge of sewage effluent from residential areas (Abdul Zali et al. 2021; Zainuddin et al. 2020). 

The nitrate levels in samples from RW1, RW2, and RW3 exceeded the base level (5 mg L-1) based 

on literature by Wang et al. (2017) and Panno et al. (2006) and were lower than the WHO guideline 

(Figure 2). Based on the literature and the author’s knowledge, till recent years, the study on the base 

level of nitrate concentration was unavailable and/or not reported in the Malaysian region. The RW1, 

RW2, and RW3 stations are in the downstream part of the river, and the abundance of nitrates in 

samples from these stations may be attributed to input from nearby point and non-point sources as 

well as cumulative loading of pollutants from the upstream region (Yang et al., 2016). The 

anthropogenic pollution from point and non-point sources was anticipated at RW1, RW2, and RW3, 

however, fertilizer waste may serve as the major contributor in these regions, as they are surrounded 

by massive rubber and palm oil plantations (Zainuddin et al. 2020). Although the nitrate levels in 

samples from RW4, RW5, and RW6 were slightly lower than the base level, their concentrations 

should not be overlooked given the potential risk of elevated nitrate from the surrounding areas and 

also contribute to cumulative loading of nitrate in the downstream regions. 
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Figure 2. Nitrate concentrations in river water samples  

Signature of nitrate stable isotopes in the river water samples  

 

The determination of nitrate level in the river water samples delivers the distribution information of 

nitrate in the Linggi River. To understand the potential nitrate pollution sources and transformation 

processes of nitrates from anthropogenic activities, the δ15N-NO3
- and δ18O-NO3

- signatures of water 

samples were extracted and analyzed using CF-EA-IRMS. The δ15N-NO3
- and δ18O-NO3

- signatures 

of river water can be used for the evaluation of the potential sources of nitrate (Fenech et al. 2012; 

Kendall 1998). The δ15N-NO3
- and δ18O-NO3

- compositions of nitrate in the river water samples are 

plotted in Figures 3 (a) and (b) respectively. From the nitrate stable isotope analysis, the δ15N-NO3
- 

values ranged from +1.4‰ to +15.6‰ and the δ18O-NO3
- values ranged from +13.8‰ to +27.4‰ in 

the river water samples. 

 

 

Figure 3. Spatial variations in δ15N-NO3
- (a) and δ18O-NO3

- (b) in river water samples 
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Sources of nitrate stable isotopes in the river water samples 

 

In Figure 4, the measured δ15N-NO3
- and δ18O-NO3

- values are colour coded according to spatial 

variations and overlaid on the estimated nitrate isotopic ranges of common sources in literature 

(Kendall 1998; Kendall et al. 2007; Kendall and Aravena 2000). At RW1 and RW3, the δ15N-NO3
- 

values were between 11.3‰ and 15.6‰ and the δ18O-NO3
- values were between 23.0‰ and 27.4‰. 

The high δ15N-NO3
- and δ18O-NO3

- values at RW1 and RW3 during both seasons may be attributed 

to the atmospheric nitrate from fixation processes associated with the release of nitrogen oxide (NOx) 

into the atmosphere from human activities (e.g., fossil fuel combustion) and natural processes 

(biogenic soil emission, biomass burning, and lightning) (Kendall et al., 2007; Li et al., 2020). Based 

on Figure 2, the high nitrate level at RW1 and RW3 stations (above base level) may due to the 

atmospheric nitrate sources.  

 

 

Figure 4. Cross plot of δ15N-NO3
- and δ18O-NO3

- values in river water samples. The isotopic 

composition of various sources in the diagram is derived from 

 (Kendall 1998; Kendall et al. 2007) 

 

At RW2 and RW5, nitrate-based fertilizers were the major source of nitrate, with δ15N-NO3
- values 

between 4.9‰ and 6.6‰ and δ18O-NO3
- values between 19.0‰ and 22.2‰. RW2 and RW5 are 

located near large palm oil and rubber plantations. The higher nitrate levels at RW2 (exceeding the 

base level) than at RW5 (below the base level) may be attributed to the larger plantation areas near 

RW2 (Rantau) than those near RW5 (Seremban), with a mixture of plantations and residential areas. 

The high and low nitrate concentration patterns from these stations were derived from similar nitrate 

fertilizer sources.  
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As shown in Figure 4, at RW4 and RW6, nitrification values were between -5‰ and 15‰ of δ18O-

NO3
- values (Kendall et al. 2007). At RW4 and RW6, the δ15N-NO3

- values were between 1.4‰ and 

2.3‰ and the δ18O-NO3
- values were between 13.8‰ and 15.9‰. RW4 and RW6 presented with the 

lowest δ15N-NO3
- values compared to other δ15N-NO3

- in other sampling stations. As shown in Figure 

4, RW4 and RW6 were affected by ammonia in fertilizers, precipitation, sewage, and manure nitrate 

pollution sources (+0‰ to +25‰). Even though the nitrate concentration in RW4 and RW6 was 

below the base level, these stations were influenced by various types of potential nitrate pollution 

sources based on the crossplot of  δ15N-NO3
- and δ18O-NO3

-. 

 

 

CONCLUSION 

 

Nitrate concentration in river water samples exceeded the base level of nitrate and was lower than the 

WHO guideline. The elevated nitrate concentration at the downstream stations may be explained by 

the cumulative loading of nitrate from the upstream regions as well as anthropogenic activities in 

nearby areas as well as point sources from the nearby areas. The cross plot of δ15N-NO3
- and δ18O-

NO3
- capables to identify the potential nitrate pollution sources in the sampling locations with higher 

and lower nitrate concentrations compared to the nitrate base level.   From the cross plot of δ15N-

NO3
- and δ18O-NO3

-, the river water samples of Linggi were affected by mixture of nitrate pollution 

from atmospheric nitrate, nitrate fertilizer, ammonia in fertilizers, precipitation, soil ammonia, 

manure, and sewage.  
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