POTENTIAL USE OF FALLOUT RADIONUCLIDES (¹³⁷Cs AND ²¹⁰Pbex) IN ASSESSING SOIL EROSION RATES WITHIN THE LANGAT WATERSHED

e-JSNM

Noor Fadzilah Yusof^{*}, Tukimat Lihan², Wan Mohd Razi Idris², Mohd. Abdul Wahab Yusof¹, Norfaizal Mohamed@Muhammad¹, Nooradilah Abdullah¹, Dainee Nor Fardzila Ahmad Tugi¹ and Muhammad Izzat Muammar Ramli¹

¹Malaysian Nuclear Agency, 43000 Kajang, Bangi, Selangor
²Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor Corresponding author: <u>fadzilah@nm.gov.my</u>

ABSTRACT

Soil erosion is a severe environmental problem arising due to human intervention such as deforestation, urbanization, rapid land use change and overgrazing. Langat watershed is highly risk in erosion potential as it is exposed to land clearing activities due to population growth. The objective of this study is to assess the potential use of ¹³⁷Cs and excess ²¹⁰Pb in soil erosion assessment within the Langat watershed. A total of 15 individual sectioned soil cores were collected along the upstream to the downstream of Langat watershed. The net erosion rate based on ¹³⁷Cs measurement ranged between -8 to -66 t ha⁻¹ yr⁻¹ with an average of -33 t ha⁻¹ yr⁻¹, whereas, based on ²¹⁰Pb_{ex}, the net erosion rate ranged between -5 to -50 t ha⁻¹ yr⁻¹ with an average of -28 t ha⁻¹ yr⁻¹. The sediment delivery ratio estimated by both radionuclides were above 90% indicating that most of the sediment transported out of the watershed. Fallout radionuclides (FRN) method is proven to be a significant alternative to overcome constraints and limitations encountered in conventional approach. Thus, FRN method appeared to be an essential and effective alternative in soil erosion assessment.

Keywords: ¹³⁷Cs, ²¹⁰Pb_{ex}, fallout radionuclide, Langat, soil redistribution

INTRODUCTION

Over recent years, there has been a growing concern over water-induced soil erosion and its associated environmental impacts. There is an increased demand to obtain reliable information on soil erosion rates and sediment deposition. Nevertheless, such information is difficult to acquire when using conventional techniques due to validation, accuracy, time-consuming and cost concerns (FAO, 2019a, 2019b). Thus, the potential for using fallout radionuclides have been explored widely in various region and scale (Chaboche et al., 2021; Moustakim et al., 2019; Porto et al., 2018).

Fallout radionuclides, namely, caesium-137 (137 Cs) is a man-made radionuclide (half-life = 30.2 ± 0.2 years) and lead-210 (210 Pb) (half-life = 22.20 ± 0.22 years) is a naturally occurring radionuclide, are widely used as environmental tracers to study soil redistribution (He and Walling, 1996; Walling, 1999). Soil redistribution consist of soil erosion, transportation and sediment deposition imposed a serious environmental problem globally. 137 Cs is originated from nuclear power plant, weapon test or nuclear power plant accident such as Chernobyl in Russia and Fukushima in Japan (Panin et al., 2001; Tagami et al., 2019).

The application of ²¹⁰Pb is still limited and needs more investigation and validation, even though it has been used extensively in sediment dating. Lead-210 is often used as a complementary radionuclide besides ¹³⁷Cs due to the low concentration of ¹³⁷Cs. ²¹⁰Pb is a natural product of the decay series of uranium-238 (²³⁸U). It is derived from radon gas decay, known as the daughter of ²²⁶Ra (half-life = 1600 ± 7 years). The diffusion of radon gas from soil, which produces ²¹⁰Pb into the atmosphere and, subsequently, its fallout provides a continuous input of radionuclides to the soil surface and sediment. The fallout radionuclide is identified as "unsupported" or "excess" ²¹⁰Pb. Due to its natural existence, ²¹⁰Pb is often measured as a complimentary radionuclide to ¹³⁷Cs in measuring soil erosion. Both radionuclides (¹³⁷Cs and ²¹⁰Pb_{ex}) reach the soil surface as fallout and are rapidly absorbed by soil particles. As they clamped onto the soil surface, they acted as a tracer when soil redistribution was controlled by deposition, erosion and transportation processes (Zheng et al., 2007). ¹³⁷Cs and ²¹⁰Pb_{ex} will provide information on medium-term (40 years) and long-term (100 years) erosion rates and patterns, respectively.

The objective of this paper is to assess the potential use of fallout radionuclides in assessing soil erosion rates within the Langat watershed. Rapid changes in land use activities in the Langat watershed vicinity would induce significant soil redistribution. Therefore, an erosion study was needed to explore the rates and patterns of soil erosion within a larger watershed based on a tropical climate. The findings of this study will provide an understanding of the erosion system and scientific basis to implement an effective countermeasure for the increasing erosion potential.

MATERIALS AND METHODS

Study Area

This study was conducted at the Langat watershed with a catchment area of 2287 km² (Figure 1). Langat River originated from Mount Nuang, Titiwangsa Range with a total length of 141 km (LUAS, 2011, 2015) and flows through three states namely Selangor, the Federal Territory of Putrajaya and Negeri Sembilan, towards the Straits of Malacca near Banting town, Kuala Langat. The Langat watershed has a tropical climate with mean annual temperature varies from 23°C to 31°C (based on years 1979-2014). Maximum rainfall normally occurs in November and minimum rainfall occurs in February with an annual precipitation at 2061 mm (DID, 2010).

The main tributaries include Semenyih River, Beranang River and Labu River with two important dams, namely, Langat dam and Semenyih dam. The Langat watershed is regarded as one of the most critical water catchment areas providing domestic and industrial water to the population within the Langat River.

In this study, the sampling area was divided into fifteen stations along the Langat watershed as shown in Figure 1 and the description of each sampling station is given in Table 1. Sampling activities included a field survey (coordinate and land use) were conducted from February to July 2019 (upstream, middle stream and downstream).

Figure 1: Sampling location along the Langat watershed

Stations	Area description
Reference point	Forestry area near Forest Reserve Ulu Langat, Forest
(RC1, RC2 and RC3)	Reserve Gunung Nuang and Forest Reserve Sungai Tekala
C1	Forest area near Pangsun River
C2	Fruit farm near Lui River
C3	Forest area
C4	Palm oil plantation near main road
C5	Rubber plantation near Broga road
C6	Cleared land near hill side
C7	Grassland near residential area
C8	Rubber plantation near Rinching
C9	Palm oil plantation near main road
C10	Palm oil plantation near Langat River
C11	Bushes near Langat Riverbank
C12	Palm oil plantation near paper factory
C13	Bushes near Langat Riverbank
C14	Sandy soil near Hartalega factory
C15	Palm oil plantation between Batang Nilai River and Labu
	River

Table 1: Area description of sampling	station
---------------------------------------	---------

Sampling Strategy

Soil erosion rates were estimated using 137 C and 210 Pb_{ex} are based on the comparison between individual and reference inventory obtained from a representative local fallout (Mabit et al., 2008). In this study, a relatively undisturbed, flat, stable site, and at the highest altitude is considered to minimize soil erosion (Khodadadi et al., 2021). Three stations were considered as reference points namely, Forest Reserve Ulu Langat, Forest Reserve Gunung Nuang and Forest Reserve Sungai Tekala (Table 1). The reference site and individual points should receive the same amount of precipitation and have similar geomorphological parameters (Nouira et al., 2003).

At each station, a stainless-steel soil corer with 40 cm long and 10.5 cm diameter was used to collect segmented core at 2 cm increments. The maximum depth is limited to 30 cm depth due to stony soil at certain sampling points. The location of the study area which included latitude, longitude and elevation were determined by a Global Positioning System (GPS).

A total of 15 individual soil cores were collected within the Langat watershed following the same procedure as the reference point. The individual cores were collected based on different types of land use. There were two core samples collected from secondary forest, five from palm oil plantation, two from rubber plantation, three from bushes/riverbank, one each from fruit farm, cleared land and grassland, respectively.

Sample Preparation and Analyses

Soil samples were oven dried at 60°C, disaggregated, and passed through a 2 mm sieve. Particle size analysis was carried out by using a particle size analyser (Model: Microtrac-X100 from USA). Besides, organic matter and soil texture were estimated using standard soil analysis method (Miyazawa et al., 2000). After sample pre-preparation, a readily weighted sample was packed into a 6 ml cylindrical container or in 30 ml plastic container and sealed for at least 21 days (International Atomic Energy Agency, 2014) to establish the secular equilibrium between ²²⁶Ra and ²²²Rn (half-life = 3.8235 ± 0.0003 days).

Measurement of ¹³⁷Cs and unsupported ²¹⁰Pb activities were undertaken simultaneously by highpurity germanium (HPGe) gamma spectrometry system (Model: Canberra from USA). The sample was counted for over 50 000s with an analytical precision at \pm 10% at the 95% level of confidence. The detector is a closed end coaxial well-detector operated on 2000 HV bias supply. The p-type detector with the FWHM resolution of 0.82 keV at 122 keV gamma line of ⁵⁷Co and 1.85 keV at 1.3 MeV gamma line of ⁶⁰Co, with the relative efficiency of 25% (Yii and Wan Mahmood, 2020). The activity of ¹³⁷Cs in the soil sample was obtained from the count rate at 662 keV peak energy. The unsupported ²¹⁰Pb activity concentration in the sample was calculated from difference between the total ²¹⁰Pb (46.5 keV peak energy) and the ²²⁶Ra (measured via its daughter ²¹⁴Bi, 609.3 keV peak energy) (Montes et al., 2019; Rabesiranana et al., 2016). Activity concentration for each radionuclide was estimated using the equation below:

Where, A is the radionuclide activity concentration (Bq kg⁻¹), C_1 is the sample peak area (count), T is the sample counting time (s), B is the peak area for sample background (count), T_b is the

background counting time (s), E is the efficiency of the equipment (%), w is the sample weight (g) and γ is the emission probability (%).

Gamma spectrometry detector was calibrated using standard multi-nuclide standard source purchased from Isotope Products Laboratories, USA (Yii and Wan Mahmood, 2020). The minimum detectable activity (MDA) was estimated to be 5 Bq kg⁻¹ for total ²¹⁰Pb, 1 Bq kg⁻¹ for ¹³⁷Cs and 1 Bq kg⁻¹ for ²²⁶Ra.

Estimation of Erosion Rates

Soil erosion rate was estimated based on the comparison between inventory at a specific point to the reference point. The radionuclide inventory was estimated using the equation below:

Where, I_a is the radionuclide inventory, A_i is the sample activity of the *i*th sample at depth increment (Bq kg⁻¹), ρ_i is the bulk density of *i*th sample (kg m⁻³) and H_i is the depth of the *i*th sample at depth increment (m). The radionuclide inventory was denoted by unit Bq m⁻².

The conversion model developed by Walling et al. (2001) was applied to estimate soil erosion rates for the sampling sites. Difference conversion models were used for ¹³⁷Cs and ²¹⁰Pb_{ex} measurement which are proportional model and mass balance model 2 (MBM2), respectively. A software package based on an Excel Add-in is available to convert the radionuclide inventory to soil redistribution rates (International Atomic Energy Agency, 2014).

Based on the study by Porto et al. (2014), the ¹³⁷Cs fallout input is assumed to be completely mixed within the cultivated layer and the soil reduction is directly proportionate to the decline of ¹³⁷Cs in the soil profile. The average annual soil loss rate, Y (t ha⁻¹ yr⁻¹) can be given as (International Atomic Energy Agency, 2014) :

$$Y = 10 \frac{BdX}{100TP} Eq....(3)$$

Where, X is the percentage decline in total ¹³⁷Cs inventory (given as $A_{ref} - A/A_{ref} \times 100$), d is the ploughing depth (m), T is the time elapsed since the initiation of ¹³⁷Cs accumulation (year) which is assumed at 1963, B is the bulk density of the soil (kg m⁻³), P is the particle size correction factor, A_{ref} is the local ¹³⁷Cs reference inventory (Bq m⁻²), and A is the total measured inventory at the individual sampling point (Bq m⁻²).

As for 210 Pb_{ex}, the MBM2 can be expressed as Walling et al. (2001):

Where, A(t) is the ²¹⁰Pb_{ex} inventories (Bq m⁻²); R is the soil erosion rate (kg m⁻² year); t is the time since the onset of ²¹⁰Pb_{ex} fallout (year); I(t) is the annual deposition flux at the time t (Bq m⁻² year); m is the cumulative mass depth representing the average plough depth (kg m⁻²); λ is the decay constant for ²¹⁰Pb_{ex} (year⁻¹); P is the particle size factor; Γ is the proportion of the freshly deposited ²¹⁰Pb_{ex} removed by erosion before mixing into the plough layer; Γ is expressed as $\Gamma = p \gamma (1-e^{-R/H})$ where γ is the proportion of the annual ²¹⁰Pb_{ex} input susceptible to removal by erosion, and H is the relaxation

e-Jurnal Sains Nuklear Malaysia, 2023, Vol. 35 (No.1): 37 – 48 *eISSN: 2232-0946*

mass depth of the initial distribution of fallout ${}^{210}\text{Pb}_{ex}$ in the soil profile (Rabesiranana et al., 2016; Walling et al., 2001). The soil erosion rates based on ${}^{137}\text{Cs}$ and ${}^{210}\text{Pb}_{ex}$ measurement were spatially mapped using the spatial analyst tool in ArcGIS ver. 10.3.

RESULTS AND DISCUSSION

The mean inventories of ¹³⁷Cs and ²¹⁰Pb_{ex} for three segmented soil cores from the reference site were estimated. The mean reference inventories for ¹³⁷Cs and ²¹⁰Pb_{ex} were estimated at 160 ± 5 Bq m⁻² and 2040 ± 5 Bq m⁻², respectively. The mean reference inventory for ¹³⁷Cs is similar to the inventory estimated by Gharibreza et al. (2013a), however, it is five times lower than study by Zainudin and Wan Ruslan (2012). This is proven that the spatial variability in fallout deposition occurred in some areas (Yang et al., 2011).

Unlike ¹³⁷Cs, limited reference inventories or fallout flux of ²¹⁰Pb_{ex} have been reported in Malaysia. However, it has been documented that ²¹⁰Pb_{ex} was successfully estimated in Lake Bera, Malaysia (Gharibreza et al., 2013b), Zambia (Walling et al., 2003) and Spain (Gaspar et al., 2017). The global annual deposition for ²¹⁰Pb_{ex} reference inventory was reported in the range of 766 to 12, 233 Bq m⁻². The mean reference inventory (2040 \pm 5 Bq m⁻²) reported in this study is in the range of global deposition.

The individual soil cores were divided into fifteen corers numbered from C1 to C15 according to their location from upstream to downstream of the Langat watershed. The concentrations of ¹³⁷Cs and ²¹⁰Pb_{ex} in cultivated soils were relatively uniform throughout the soil profile. These individual soil cores had experienced net erosion due to rapid land use change since 1970s (Rapport et al., 2002).

The mean of inventories estimated from fifteen individual points for both radionuclides were lower than the reference inventory, thus, it is observed that erosion has occurred at the study area (Khodadadi et al., 2021). The mean of inventories for ¹³⁷Cs measured for 15 individual cores collected ranged between 43 ± 6 Bq m⁻² to 139 ± 19 Bq m⁻² with an average of 88 ± 13 Bq m⁻². On the other hand, the mean inventories for ²¹⁰Pb_{ex} ranged between 429 ± 13 Bq m⁻² to 2312 ± 26 Bq m⁻² with an average of 1080 ± 21 Bq m⁻².

The net erosion rates calculated using Eq. (3) ranged from -8 to -66 t ha⁻¹ yr⁻¹ with an average of -33 t ha⁻¹ yr⁻¹ based on ¹³⁷Cs measurement. The average sediment delivery ratio based on ¹³⁷Cs measurement is 95%. Moreover, based on ²¹⁰Pb_{ex} measurement, the net erosion rates calculated using Eq. (4) was ranged from -5 to -50 t ha⁻¹ yr⁻¹ with an average of -28 t ha⁻¹ yr⁻¹. The average sediment delivery ratio estimated based on ²¹⁰Pb_{ex} is 90%. A negative signed indicated the soil loss at the Langat watershed.

The spatial distribution of ¹³⁷Cs inventories in the Langat watershed was highly variable (Figure 2). In general, the distribution of ¹³⁷Cs inventories presented a contrast between the upstream to the downstream of the watershed. The highest ¹³⁷Cs inventories were found at the Labu sub-basin and some of area at the Banting town. In contrast, lower ¹³⁷Cs inventory was recorded on the middle stream near Semenyih, Buah and Dengkil sub-basin. Subsequently, the spatial distribution of soil erosion rates contrasts with the distribution pattern of the ¹³⁷Cs inventories. It was noted that, the highest erosion rate was found in the middle stream near Semenyih, Buah and Dengkil sub-basin, whereas the lowest erosion rates occurred near Labu sub-basin towards Banting town (Figure 3).

e-Jurnal Sains Nuklear Malaysia, 2023, Vol. 35 (No.1): 37 – 48 *eISSN: 2232-0946*

Based on ²¹⁰Pb_{ex} measurement, the highest inventory was found at the northern part of the Langat watershed. The northern part of Langat watershed was surrounded by the steep slope and mountainous area. The dense forest on the steep slope protects the soil surface from soil erosion, thus, the higher inventory of ²¹⁰Pb_{ex} were found (Gaspar et al., 2013). The lowest inventories were noted from the middle stream towards the downstream to the Malacca Strait (Figure 4). Similar to the ¹³⁷Cs measurement, the spatial distribution of soil erosion rates was slightly different than the inventories. The highest erosion rate occurred from the middle stream towards the Malacca Strait. On the other hand, the lowest erosion risk is located to the north of the Langat watershed (Figure 5).

The spatial distribution for ²¹⁰Pb_{ex} inventories has a different pattern than ¹³⁷Cs inventories in the Langat watershed. ²¹⁰Pb_{ex} is more sensitive to recent changes in soil erosion rates compared to ¹³⁷Cs measurements due to its constant fallout inputs and the shorter half-life of ²¹⁰Pb (Porto et al., 2016; Walling et al., 2003).

Figure 2: Spatial distribution of ¹³⁷Cs inventories in Langat watershed

Figure 3: Spatial distribution of estimated net erosion rates by ¹³⁷Cs

Figure 4: Spatial distribution of ²¹⁰Pbex inventories in Langat watershed

Figure 5: Spatial distribution of estimated net erosion rates by ²¹⁰Pbex

CONCLUSION

The spatial distribution of fallout radionuclides inventories (137 Cs and 210 Pb_{ex}) provided the basis for estimating soil erosion rates at the Langat watershed. This contribution proved the potential use of fallout radionuclides to quantify the medium- and long-term soil erosion rates and provides quantitative information on the relationship between erosion and inventory.

Based on the result obtained, it is proven that the radionuclide inventories are inversely proportional to the soil erosion rate. This study also illustrates the importance of establishing reference inventory within the local catchment. Individual inventory was relatively lower compared to the reference inventory, indicating erosion occurred at the specific point.

The combination of fallout radionuclides measurements with GIS software highlighted the soil redistribution processes occurring on the different geomorphic components identified within the Langat watershed. This potential combination encouraged the ability to upscale this study to a large watershed and help to strategies for a cost-effective method of assessing soil redistribution with limited sampling points.

ACKNOWLEDGEMENT

The authors would like to thank the Universiti Kebangsaan Malaysia and Malaysian Nuclear Agency for its facilities and support for this project. Also, a special gratitude to Universiti Kebangsaan Malaysia for providing financial support through Research University Grant (GUP-2019-043).

REFERENCES

- Chaboche, P.-A., Saby, N. P. A., Laceby, J. P., Minella, J. P. G., Tiecher, T., Ramon, R., Tassano, M., Cabral, P., Cabrera, M., da Silva, Y. J. A. B., Lefevre, I., and Evrard, O. (2021). Mapping the spatial distribution of global ¹³⁷Cs fallout in soils of South America as a baseline for Earth Science studies, *Earth-Science Reviews*. 214: 103542.
- Department of Irrigation and Drainage (DID). (2010). *Guideline for Erosion and Sediment Control in Malaysia*. Kuala Lumpur: Ministry of Natural Resources and Environment, Department of Irrigation and Drainage Malaysia.
- FAO. (2019a). Outcome Document of the Global Symposium on Soil Erosion.
- FAO. (2019b). Soil Erosion: The Greatest Challenge to Sustainable Soil Management.
- Gaspar, L., Navas, A., Machín, J., and Walling, D. E. (2013). Using ²¹⁰Pb_{ex} measurements to quantify soil redistribution along two complex toposequences in mediterranean agroecosystems, Northern Spain, *Soil and Tillage Research*. 130: 81-90.
- Gaspar, L., Webster, R., and Navas, A. (2017). Fate of ²¹⁰Pb_{ex} fallout in soil under forest and scrub of the central Spanish Pre-Pyrenees, *European Journal of Soil Science*. 68: 259-269.
- Gharibreza, M., John Kuna, R., Ismail, Y., Zainudin, O., Wan Zakaria, W. M. T., and Mohammad Aqeel, A. (2013a). Land use changes and soil redistribution estimation using ¹³⁷Cs in the tropical Bera Lake catchment, Malaysia, *Soil and Tillage Research*. 131: 1-10.
- Gharibreza, M., John Kuna, R., Ismail, Y., Zainudin, O., Wan Zakaria, W. M. T., and Mohammad Aqeel, A. (2013b). Sedimentation rates in Bera Lake (Peninsular Malaysia) using ²¹⁰Pb and ¹³⁷Cs radioisotopes, *Geosciences Journal*. 17: 211-220.
- He, Q., and Walling, D. E. (1996). Interpreting particle size effects in the adsorption of ¹³⁷Cs and unsupported ²¹⁰Pb by mineral soils and sediments, *Journal of Environmental Radioactivity*. 30: 117-137.
- International Atomic Energy Agency. (2014). Guidelines for using fallout radionuclides to assess erosion and effectiveness of soil conservation strategies (ISBN 978-92-0-105414-2).
- Khodadadi, M., Alewell, C., Mirzaei, M., Ehssan-Malahat, E., Asadzadeh, F., Strauss, P., and Meusburger, K. (2021). Deforestation effects on soil erosion rates and soil physicochemical properties in Iran: a case study of using fallout radionuclides in a Chernobyl contaminated area, *Soil Discussions [preprint]*. 2.

LUAS. (2011). State of the River Report 2011: Sungai Langat.

LUAS. (2015). State of the River Report 2015: Sungai Langat.

- Mabit, L., Benmansour, M., and Walling, D. E. (2008). Comparative advantages and limitations of the fallout radionuclides ¹³⁷Cs, ²¹⁰Pb_{ex} and ⁷Be for assessing soil erosion and sedimentation, *Journal of Environmental Radioactivity*. 99: 1799 -1807.
- Miyazawa, M., Pavan, M. A., de, O., Ionashiro, M., and Silva, A. K. (2000). Gravimetric determination of soil organic matter, *Brazilian Archives of Biology and Technology*. 43: 475-478.
- Montes, M. L., Rizzoto, M. G., Ayub, J. J., Torres Astorga, R., and Taylor, M. A. (2019). An alternative methodology to determine ²¹⁰Pb activity soil profiles, *Journal of Environmental Radioactivity*. 208-209: 105998.
- Moustakim, M., Benmansour, M., Zouagui, A., Nouira, A., Benkdad, A., and Damnati, B. (2019). Use of caesium-137 re-sampling and excess lead-210 techniques to assess changes in soil redistribution rates within an agricultural field in Nakhla watershed, *Journal of African Earth Sciences.* 156: 158-167.
- Nouira, A., Sayouty, E. H., and Benmansour, M. (2003). Use of ¹³⁷Cs technique for soil erosion study in the agricultural region of Casablanca in Morocco, *Journal of Environmental Radioactivity*. 68: 11-26.
- Panin, A. V., Walling, D. E., and Golosov, V. N. (2001). The role of soil erosion and fluvial processes in the post-fallout redistribution of Chernobyl-derived caesium-137: a case study of the Lapki catchment, Central Russia, *Geomorphology*. 40: 185-204.
- Porto, P., Walling, D. E., and Callegari, G. (2018). Using repeated ¹³⁷Cs and ²¹⁰Pb_{ex} measurements to establish sediment budgets for different time windows and explore the effect of connectivity on soil erosion rates in a small experimental catchment in Southern Italy, *Land Degradation & Development*. 29: 1819-1832.
- Porto, P., Walling, D. E., and Capra, A. (2014). Using ¹³⁷Cs and ²¹⁰Pb_{ex} measurements and conventional surveys to investigate the relative contributions of interrill/rill and gully erosion to soil loss from a small cultivated catchment in Sicily, *Soil and Tillage Research*. 135: 18-27.
- Porto, P., Walling, D. E., Cogliandro, V., and Callegari, G. (2016). Exploring the potential for using ²¹⁰Pb_{ex} measurements within a re-sampling approach to document recent changes in soil redistribution rates within a small catchment in Southern Italy, *Journal of Environmental Radioactivity*. 164: 158-168.
- Rabesiranana, N., Rasolonirina, M., Solonjara, A. F., Ravoson, H. N., Raoelina, A., and Mabit, L. (2016). Assessment of soil redistribution rates by ¹³⁷Cs and ²¹⁰Pb_{ex} in a typical Malagasy agricultural field, *Journal of Environmental Radioactivity*. 152: 112-118.
- Rapport, D. J., Lasley, B. L., Rolston, D. E., Nielsen, N. O., Qualset, C. O., and Damania, A. B. (2002). Managing for Healthy Ecosystems. CRC Press, Florida, USA

- Tagami, K., Tsukada, H., and Uchida, S. (2019). Quantifying spatial distribution of ¹³⁷Cs in reference site soil in Asia, *CATENA*. 180: 341-345.
- Walling, D. E. (1999). Linking land use, erosion and sediment yields in river basins, *Hydrobiologia*. 410: 223-240.
- Walling, D. E., Collins, A. L., and Sichingabula, H. M. (2003). Using unsupported lead-210 measurements to investigate soil erosion and sediment delivery in a small Zambian catchment, *Geomorphology*. 52: 193-213.
- Walling, D. E., Zhang, Y., and He, Q. (2001). Models for Converting Measurements of Environmental Radionuclide Inventories (¹³⁷Cs, Excess ²¹⁰Pb, and ⁷Be) to Estimates of Soil Erosion and Deposition Rates (Including Software for Model Implementation).
- Yang, Y.-H., Yan, B.-X., and Zhu, H. (2011). Estimating soil erosion in northeast China using ¹³⁷Cs and ²¹⁰Pb_{ex}, *Pedosphere*. 21: 706-711.
- Yii, M. W., and Wan Mahmood, Z. U. y. (2020). Estimation of sediment accumulation rate at different season in Juru River and Perai River (Perai Industrial Area, Penang, Malaysia), *Jurnal Sains Nuklear Malaysia*. 32: 8-22.
- Zainudin, O., and Wan Ruslan, I. (2012). Using environmental radionuclide, ¹³⁷Cs to investigate soil re–distribution in an agricultural plot in Kalumpang, Selangor, Malaysia, *Kajian Malaysia*. 30: 45-70.
- Zheng, J.-J., He, X.-B., Walling, D. E., Zhang, X.-B., Flanagan, D., and Qi, Y.-Q. (2007). Assessing soil erosion rates on manually-tilled hillslopes in the Sichuan Hilly basin using ¹³⁷Cs and ²¹⁰Pb_{ex} measurements, *Pedosphere*. 17: 273-283.